Bài 20: Hàm số mũ và hàm số lôgarit | Giải bài tập Toán 11 Tập 2 | Chương 6: Hàm Số Mũ Và Hàm Số Logarit - Lớp 11 - Kết Nối Tri Thức Với Cuộc Sống

Giải bài tập Toán 11 Tập 2 - Bài 20


Mở đầu trang 16 Toán 11 Tập 2: Sự tăng trưởng dân số được ước tính theo công thức tăng trưởng mũ sau:

A = Pert,

trong đó P là dân số của năm lấy làm mốc, A là dân số sau t năm, r là tỉ lệ tăng dân số hằng năm. Biết rằng vào năm 2020, dân số Việt Nam khoảng 97,34 triệu người và tỉ lệ tăng dân số là 0,91% (theo danso.org). Nếu tỉ lệ tăng dân số này giữ nguyên, hãy ước tính dân số Việt Nam vào năm 2050.

Lời giải:

Sau bài học, ta giải quyết được bài toán như sau:

Theo bài ra ta có P = 97,34; r = 0,91%.

Từ năm 2020 đến năm 2050 là 30 năm nên t = 30.

Ước tính dân số Việt Nam vào năm 2050 là

A = Pert = 97,34 ∙ e0,91% ∙ 30 ≈ 127,9 (triệu người).

1. Hàm số mũ

HĐ1 trang 16 Toán 11 Tập 2: Nhận biết hàm số mũ

a) Tính y = 2x khi x lần lượt nhận các giá trị – 1; 0; 1. Với mỗi giá trị của x có bao nhiêu giá trị của y = 2x tương ứng?

b) Với những giá trị nào của x, biểu thức y = 2x có nghĩa?

Lời giải:

a) Ta có:

+ Với x = – 1 thì y = 2–1 = 1/2

+ Với x = 0 thì y = 20 = 1.

+ Với x = 1 thì y = 21 = 2.

Ta nhận thấy với mỗi giá trị của x có duy nhất một giá trị của y = 2x tương ứng.

b) Biểu thức y = 2x có nghĩa với mọi giá trị của x.

Câu hỏi trang 16 Toán 11 Tập 2: Trong các hàm số sau, những hàm số nào là hàm số mũ? Khi đó hãy chỉ ra cơ số.

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-0

Lời giải:

a) Hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-1 là hàm số mũ với cơ số √2.

b) Ta có hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-2 . Do đó, hàm số đã cho là hàm số mũ với cơ số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-3.

c) Ta có hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-4 . Do đó, hàm số đã cho là hàm số mũ với cơ số 2.

d) Hàm số y = x–2 không phải là hàm số mũ.

HĐ2 trang 16 Toán 11 Tập 2: Nhận dạng đồ thị và tính chất của hàm số mũ

Cho hàm số mũ y = 2x.

a) Hoàn thành bảng giá trị sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-5

b) Trong mặt phẳng toạ độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với x ∈ ℝvà nối lại ta được đồ thị của hàm số y = 2x.

c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số y = 2x.

Lời giải:

a) Ta có: hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-6

Vậy ta hoàn thành được bảng đã cho như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-7

b) Trên mặt phẳng tọa độ Oxy, ta biểu diễn các điểm (x; y) ở câu a và lấy thêm nhiều điểm (x; 2x) với x ∈ ℝ, nối lại ta được đồ thị của hàm số y = 2x như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-8

c) Từ đồ thị ở hình trên, ta thấy hàm số y = 2x:

+ Có tập giá trị là (0; + ∞);

+ Đồng biến trên ℝ.

Luyện tập trang 17 Toán 11 Tập 2: Vẽ đồ thị của hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-9.

Lời giải:

Ta lập bảng giá trị của hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-10

tại một số điểm như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-11

Từ đó, ta vẽ được đồ thị hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-12 như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-13

2. Hàm số Lôgarit

HĐ3 trang 18 Toán 11 Tập 2: Nhận biết hàm số lôgarit

a) Tính y = log2x khi x lần lượt nhận các giá trị 1; 2; 4. Với mỗi giá trị của x > 0 có bao nhiêu giá trị của y = log2x ­tương ứng?

b) Với những giá trị nào của x, biểu thức y = log2x có nghĩa?

Lời giải:

a) Ta có:

+ Với x = 1 thì y = log21 = 0;

+ Với x = 2 thì y = log22 = 1;

+ Với x = 4 thì y = log24 = log222 = 2.

Nhận thấy với mỗi giá trị của x > 0 có duy nhất một giá trị của y = log2x ­tương ứng.

b) Biểu thức y = log2x có nghĩa khi x > 0.

Câu hỏi trang 18 Toán 11 Tập 2: Trong các hàm số sau, những hàm số nào là hàm số lôgarit? Khi đó hãy chỉ ra cơ số

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-14

Lời giải:

a) Hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-15

 là hàm số lôgarit với cơ số √3.

b) Ta có hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-16 do đó hàm số đã cho là hàm số lôgarit với cơ số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-17

c) Hàm số y = logx2 không phải hàm số lôgarit.

d) Hàm số hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-18 không phải hàm số lôgarit.

HĐ4 trang 18 Toán 11 Tập 2: Nhận dạng đồ thị và tính chất của hàm số lôgarit

Cho hàm số lôgarit y = log2x.

a) Hoàn thành bảng giá trị sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-19

b) Trong mặt phẳng toạ độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) và nối lại ta được đồ thị của hàm số y = log2x.

c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số y = log2x.

Lời giải:

a) Ta có log22–3 = – 3; log22–2 = – 2; log22– 1 = – 1; log21 = 0; log­22 = 1; log222 = 2; log223 = 3. Vậy ta hoàn thành được bảng đã cho như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-20

b) Trên mặt phẳng tọa độ Oxy, ta biểu diễn các điểm (x; y) ở câu a và lấy thêm nhiều điểm (x; log2x) với x > 0, nối lại ta được đồ thị của hàm số y = log2x như sau:

hinh-anh-bai-20-ham-so-mu-va-ham-so-logarit-3577-21

c) Từ đồ thị đã vẽ ở câu b, nhận thấy hàm số y = log2x:

+ Có tập giá trị là ℝ;

+ Đồng biến trên (0; + ∞).

Vận dụng trang 19 Toán 11 Tập 2: Giải bài toán trong tình huống mở đầu (kết quả tính theo đơn vị triệu người và làm tròn đến chữ số thập phân thứ hai).

Lời giải:

Theo bài ra ta có P = 97,34; r = 0,91%.

Từ năm 2020 đến năm 2050 là 30 năm nên t = 30.

Ước tính dân số Việt Nam vào năm 2050 là

A = Pert = 97,34 ∙ e0,91% ∙ 30 ≈ 127,9 (triệu người).

Tin tức mới


Đánh giá

Bài 20: Hàm số mũ và hàm số lôgarit | Giải bài tập Toán 11 Tập 2 | Chương 6: Hàm Số Mũ Và Hàm Số Logarit - Lớp 11 - Kết Nối Tri Thức Với Cuộc Sống

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Tin tức mới

Bộ Sách Lớp 11

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Kết Nối Tri Thức Với Cuộc Sống

Lớp 1

Sách giáo khoa dành cho lớp 1

Lớp 6

Sách giáo khoa dành cho lớp 6

Lớp 5

Sách giáo khoa dành cho lớp 5

Lớp 4

Sách giáo khoa dành cho lớp 4

Lớp 2

Sách giáo khoa dành cho lớp 2

Lớp 3

Sách giáo khoa dành cho lớp 3

Lớp 7

Sách giáo khoa dành cho lớp 7

Lớp 8

Sách giáo khoa dành cho lớp 8

Lớp 9

Sách giáo khoa dành cho lớp 9

Lớp 10

Sách giáo khoa dành cho lớp 10

Lớp 11

Sách giáo khoa dành cho lớp 11

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.