Bài 23: Đường thẳng vuông góc với mặt phẳng | Giải bài tập Toán 11 Tập 2 | Chương 7: Quan Hệ Vuông Góc Trong Không Gian - Lớp 11 - Kết Nối Tri Thức Với Cuộc Sống

Giải bài tập Toán 11 Tập 2 - Bài 23


1. Đường thẳng vuông góc với mặt phẳng

HĐ1 trang 31 Toán 11 Tập 2: Đối với cánh cửa như trong Hình 7.10, khi đóng – mở cánh cửa, ta coi mép dưới BC của cánh cửa luôn sát sàn nhà (khe hở không đáng kể).

a) Từ quan sát trên, hãy giải thích vì sao đường thẳng AB vuông góc với mọi đường thẳng đi qua B trên sàn nhà.

b) Giải thích vì sao đường thẳng AB vuông góc với mọi đường thẳng trên sàn nhà.

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-0

Lời giải:

a) Trong quá trình đóng – mở cửa, đường thẳng AB cố định vì luôn đi qua hai bản lề cố định, đường thẳng BC trên sàn luôn đi qua điểm B cố định (B là giao của đường thẳng AB và mặt sàn). Vì đường thẳng BC quay quanh điểm B và (AB, BC) = 90° nên AB vuông góc với các đường thẳng trên mặt sàn và đi qua B.

b) Lấy đường thẳng a bất kì trên mặt sàn. Xét a' là đường thẳng trên mặt sàn, đi qua B và song song với a. Khi đó (AB, a) = (AB, a') = 90°.

Câu hỏi trang 32 Toán 11 Tập 2: Nếu đường thẳng ∆ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau hay không?

Lời giải:

Nếu đường thẳng ∆ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau.

Vì nếu trái lại thì ∆ song song hoặc nằm trên (P). Khi đó, có đường thẳng a thuộc (P) và song song với ∆. Do đó (∆, a) = 0°, điều này mâu thuẫn với giả thiết ∆ vuông góc  với (P).

HĐ2 trang 32 Toán 11 Tập 2: Gấp tấm bìa cứng hình chữ nhật sao cho nếp gấp chia tấm bìa thành hai hình chữ nhật, sau đó đặt nó lên mặt bàn như Hình 7.11.

a) Bằng cách trên, ta tạo đường thẳng AB vuông góc với hai đường thẳng nào thuộc mặt bàn?

b) Trên mặt bàn, qua điểm A kẻ một đường thẳng a tùy ý. Dùng ê ke, hãy kiểm tra trên mô hình xem AB có vuông góc với a hay không.

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-1

Lời giải:

a) Vì ABCD và ABMN là hình chữ nhật nên AB ⊥ AD, AB ⊥ AN.

b) Trong mô hình, đặt ê ke như mô tả trong hình vẽ ta thấy một cạnh của ê ke trùng với AB và một cạnh thuộc a nên AB vuông góc với a.

Câu hỏi trang 32 Toán 11 Tập 2: Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì đường thẳng đó có vuông góc với cạnh còn lại hay không?

Lời giải:

Vì đường thẳng vuông góc với hai cạnh của một tam giác nên đường thẳng đó vuông góc với mặt phẳng chứa tam giác. Do đó đường thẳng đó vuông góc với cạnh còn lại của tam giác.

Luyện tập 1 trang 32 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, SA = SC và SB = SD (H.7.14). Chứng minh rằng SO ⊥ (ABCD).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-2

Lời giải:

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-3

Do O là tâm của hình bình hành ABCD nên O là trung điểm của AC, BD.

Xét tam giác SAC có SA = SC nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao hay SO ⊥ AC.

Xét tam giác SBD có SB = SD nên tam giác SBD cân tại S mà SO là trung tuyến nên SO là đường cao hay SO ⊥ BD.

Vì  SO ⊥ AC và SO ⊥ BD nên SO ⊥ (ABCD).

Vận dụng trang 33 Toán 11 Tập 2: Khi làm cột treo quần áo, ta có thể tạo hai thanh đế thẳng đặt dưới sàn nhà và dựng cột treo vuông góc với hai thanh đế đó (H.7.15). Hãy giải thích vì sao bằng cách đó ta có được cột treo vuông góc với sàn nhà.

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-4

Lời giải:

Ta coi hai thanh đế thẳng đặt dưới sàn nhà là hai đường thẳng cắt nhau và sàn nhà là một mặt phẳng.

Vì cột treo vuông góc với hai thanh đế (cắt nhau) nên cột vuông góc với sàn nhà (chứa hai thanh đế).

2. Tính chất

HĐ3 trang 33 Toán 11 Tập 2: Cho điểm O và đường thẳng ∆ không đi qua O. Gọi  d là đường thẳng đi qua O và song song với ∆. Xét hai mặt phẳng phân biệt tuỳ ý (P) và (Q) cùng chứa d. Trong các mặt phẳng (P), (Q) tương ứng kẻ các đường thẳng a, b cùng đi qua O và vuông góc với d (H.7.16). Giải thích vì sao mp(a, b) đi qua O và vuông góc với ∆.

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-5

Lời giải:

Ta có (P) = mp(d, a) và (Q) = mp(d, b).

Do (P) và (Q) là hai mặt phẳng phân biệt nên a và b là hai đường thẳng phân biệt.

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-6

Vậy D vuông góc với a và b và a, b đi qua O nên D ⊥ mp(a, b).

HĐ4 trang 34 Toán 11 Tập 2: Cho mặt phẳng (P) và điểm O. Trong mặt phẳng (P), lấy hai đường thẳng cắt nhau a, b tuỳ ý. Gọi (α), (β) là các mặt phẳng qua O và tương ứng vuông góc với a, b (H.7.19).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-7

a) Giải thích vì sao hai mặt phẳng (α), (β) cắt nhau theo một đường thẳng ∆ đi qua O.

b) Nêu nhận xét về mối quan hệ giữa ∆ và (P).

Lời giải:

a) Vì a ⊥ (α) nên a và (α) có điểm chung, do đó (α) và (P) có điểm chung.

Mặt khác (α) không trùng (P) vì (α) vuông góc với a và a nằm trong (P). Do đó (α) và (P) cắt nhau theo một giao tuyến n.

Vì b ⊥ (β) nên b và (β) có điểm chung, do đó (b) và (P) có điểm chung.

Lại có (β) không trùng với (P) vì (b) vuông góc với b và b nằm trong (P). Do đó (β) và (P) cắt nhau theo giao tuyến m.

Do m ⊥ b, n ⊥ a và a, b cắt nhau nên m, n cắt nhau suy ra chúng phân biệt.

Do đó, (α) và (β) không thể trùng nhau. Mặt khác, (α) và (b) có điểm chung O nên chúng cắt nhau theo một đường thẳng ∆ đi qua O.

b) Vì (α) và (β) đều đi qua O nên giao tuyến ∆ của chúng đi qua O. Hơn nữa a, b tương ứng vuông góc với (α) và (b) nên chúng vuông góc với ∆. Do ∆ vuông góc với a, b nên ∆ vuông góc (P).

Luyện tập 2 trang 34 Toán 11 Tập 2: Cho ba điểm phân biệt A, B, C sao cho các đường thẳng AB và AC cùng vuông góc với một mặt phẳng (P). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Lời giải:

Theo đề có AB ⊥ (P) và AC ⊥ (P).

Mà có duy nhất một đường thẳng đi qua A và vuông góc với (P) nên AB và AC trùng nhau. Do đó A, B, C thẳng hàng.

3. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng

HĐ5 trang 34 Toán 11 Tập 2: Cho đường thẳng a vuông góc với mặt phẳng (P) và song song với đường thẳng b. Lấy một đường thẳng m bất kì thuộc mặt phẳng (P) (H.7.20). Tính (b, m) và từ đó rút ra mối quan hệ giữa b và (P).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-8

Lời giải:

Vì a ⊥ (P) mà m ⊥ (P) nên a ⊥ m hay (a, m) = 90°.

Mà b // a nên (b, m) = (a, m) = 90°.

Do b vuông góc với mọi đường thẳng m bất kì trong (P) nên b vuông góc với (P).

HĐ6 trang 34 Toán 11 Tập 2: Cho hai đường thẳng phân biệt a và b cùng vuông góc với mặt phẳng (P). Xét O là một điểm thuộc a nhưng không thuộc b. Gọi c là đường thẳng qua O và song song với b (H.7.21).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-9

a) Hỏi c có vuông góc với với (P) hay không ? Nêu nhận xét về vị trí tương đối giữa a và c.

b) Nêu nhận xét về vị trí tương đối giữa hai đường thẳng a và b.

Lời giải:

a) Vì b ⊥ (P) và c // b nên c ⊥ (P).

Vì a và c cắt nhau tại O, mà a ⊥ (P) và c ⊥ (P) nên a và c trùng nhau.

b) Vì a và c trùng nhau và b // c nên a // b.

HĐ7 trang 35 Toán 11 Tập 2: Cho hai mặt phẳng (P) và (Q) song song với nhau và đường thẳng ∆ vuông góc với (P). Gọi b là một đường thẳng bất kì thuộc (Q). Lấy một đường thẳng a thuộc (P) sao cho a song song với b (H.7.23). So sánh (∆, b) và (∆, a). Từ đó rút ra mối quan hệ giữa ∆ và (Q).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-10

Lời giải:

Vì ∆ ⊥ (P) mà a thuộc (P) nên (∆, a) = 90°.

Lại có a // b nên (∆, a) = (∆, b) = 90°.

Vì (∆, b) = 90° nên ∆ ⊥ b mà b là đường thẳng bất kì thuộc (Q) nên ∆ ⊥ (Q).

HĐ8 trang 35 Toán 11 Tập 2: Cho hai mặt phẳng (P) và (Q) cùng vuông góc với đường thẳng ∆. Xét O là một điểm thuộc mặt phẳng (P) nhưng không thuộc mặt phẳng (Q). Gọi (R) là mặt phẳng đi qua O và song song với (Q). (H.7.24).

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-11

a) Hỏi (R) có vuông góc với ∆ hay không ? Nêu nhận xét về vị trí tương đối giữa (P) và (R).

b) Nêu vị trí tương đối giữa (P) và (Q).

Lời giải:

a) Do ∆ ⊥ (Q) mà (Q) // (R) nên ∆ ⊥ (R).

Do ∆ ⊥ (R) và ∆ ⊥ (P) mà (P) và (R) cùng đi qua O nên (P) và (R) trùng nhau.

b) Vì (P) và (R) trùng nhau mà (Q) // (R) nên (P) // (Q).

Luyện tập 3 trang 35 Toán 11 Tập 2: Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn. Hỏi hai mặt phẳng đó có song song với nhau hay không ? Vì sao ?

Lời giải:

Ta coi chân bàn như đường thẳng, mặt bàn và mặt sàn là hai mặt phẳng.

Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn thì hai mặt phẳng đó song song với nhau vì hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau.

HĐ9 trang 35 Toán 11 Tập 2: Cho đường thẳng a song song với mặt phẳng (P) và đường thẳng ∆ vuông góc với mặt phẳng (P). Tính (∆, a).

Lời giải:

Vì a song song với mặt phẳng (P) nên a song song với một đường thẳng b nằm trong (P).

Mà đường thẳng ∆ vuông góc với mặt phẳng (P) nên (∆, b) = 90°.

Khi đó (∆, a) = (∆, b) = 90°.

Vậy (∆, a) = 90°.

HĐ10 trang 36 Toán 11 Tập 2: Cho đường thẳng a và mặt phẳng (P) cùng vuông góc với một đường thẳng ∆.

a) Qua một điểm O thuộc (P), kẻ đường thẳng a' song song với a. Nêu vị trí tương đối giữa a' và (P).

b) Nêu vị trí tương đối giữa a và (P).

Lời giải:

a) Do a // a' và ∆ ⊥ a nên ∆ ⊥ a'.

Lại có ∆ ⊥ (P) suy ra, a' // (P) hoặc a' thuộc (P).

Vì a' đi qua O thuộc (P) nên a' thuộc (P).

b) Vì a // a' , a' thuộc (P) nên a thuộc (P) hoặc a song song với (P).

Luyện tập 4 trang 36 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA ⊥ (ABCD). Kẻ AH vuông góc với SC (H thuộc SC), BM vuông góc với SC (M thuộc SC). Chứng minh rằng SC ⊥ (MBD) và AH // (MBD).

Lời giải:

hinh-anh-bai-23-duong-thang-vuong-goc-voi-mat-phang-3581-12

Vì ABCD là hình vuông nên AC ⊥ BD.

Vì SA ⊥ (ABCD) nên SA ⊥ BD mà AC ⊥ BD nên BD ⊥ (SAC).

Do BD ⊥ (SAC) nên BD ⊥ SC.

Vì BM ⊥ SC mà BD ⊥ SC nên SC ⊥ (BMD).

Gọi O là giao điểm của AC và BD.

Vì SC ⊥ (BMD) nên SC ⊥ OM.

Lại có AH ⊥ SC và SC ⊥ OM nên AH // OM.

Vì AH // OM và OM ⊂ (MBD) nên AH // (MBD).

Tin tức mới


Đánh giá

Bài 23: Đường thẳng vuông góc với mặt phẳng | Giải bài tập Toán 11 Tập 2 | Chương 7: Quan Hệ Vuông Góc Trong Không Gian - Lớp 11 - Kết Nối Tri Thức Với Cuộc Sống

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Tin tức mới

Bộ Sách Lớp 11

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Kết Nối Tri Thức Với Cuộc Sống

Lớp 1

Sách giáo khoa dành cho lớp 1

Lớp 6

Sách giáo khoa dành cho lớp 6

Lớp 5

Sách giáo khoa dành cho lớp 5

Lớp 4

Sách giáo khoa dành cho lớp 4

Lớp 2

Sách giáo khoa dành cho lớp 2

Lớp 3

Sách giáo khoa dành cho lớp 3

Lớp 7

Sách giáo khoa dành cho lớp 7

Lớp 8

Sách giáo khoa dành cho lớp 8

Lớp 9

Sách giáo khoa dành cho lớp 9

Lớp 10

Sách giáo khoa dành cho lớp 10

Lớp 11

Sách giáo khoa dành cho lớp 11

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.