Nội Dung Chính
Mở đầu trang 22 Toán 11 Tập 1: Giả sử vận tốc v (tính bằng lít/giây) của luồng khí trong một chu kì hô hấp (tức là thời gian từ lúc bắt đầu của một nhịp thở đến khi bắt đầu của nhịp thở tiếp theo) của một người nào đó ở trạng thái nghỉ ngơi được cho bởi công thức
trong đó t là thời gian (tính bằng giây). Hãy tìm thời gian của một chu kì hô hấp đầy đủ và số chu kì hô hấp trong một phút của người đó.
Lời giải:
Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:
Thời gian của một chu kì hô hấp đầy đủ chính là một chu kì tuần hoàn của hàm v(t) và là
Ta có: 1 phút = 60 giây.
Do đó, số chu kì hô hấp trong một phút của người đó là 60/6 = 10 (chu kì).
1. Định nghĩa hàm số lượng giác
HĐ1 trang 22 Toán 11 Tập 1: Hoàn thành bảng sau:
Lời giải:
Lần lượt thay các giá trị vào sin x, cos x, tan x và cot x, ta hoàn thành được bảng như sau:
Luyện tập 1 trang 23 Toán 11 Tập 1: Tìm tập xác định của hàm số
Lời giải:
Biểu thức có nghĩa khi sin x ≠ 0, tức là x ≠ kπ (k ∈ ℤ).
Vậy tập xác định của hàm số là ℝ \ {kπ | k ∈ ℤ}.
2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn
HĐ2 trang 23 Toán 11 Tập 1: Cho hai hàm số f(x) = x2 và g(x) = x3, với các đồ thị như hình dưới đây.
a) Tìm các tập xác định Df, Dg của các hàm số f(x) và g(x).
b) Chứng tỏ rằng f(– x) = f(x), ∀ x ∈ Df. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = f(x) đối với hệ trục tọa độ Oxy?
c) Chứng tỏ rằng g(– x) = – g(x), ∀ x ∈ Dg. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = g(x) đối với hệ trục tọa độ Oxy?
Lời giải:
a) Biểu thức x2 và x3 luôn có nghĩa với mọi x ∈ ℝ.
Vậy tập xác định của hàm số f(x) = x2 là Df = ℝ và tập xác định của hàm số g(x) = x3 là Dg= ℝ.
b) ∀ x ∈ Df, ta luôn có f(– x) = (– x)2 = x2 = f(x). Vậy f(– x) = f(x), ∀ x ∈ Df.
Từ hình vẽ ta thấy đồ thị hàm số f(x) = x2 đối xứng với nhau qua trục tung Oy.
c) ∀ x ∈ Dg, ta luôn có g(– x) = (– x)3 = – x3 = – g(x). Vậy g(– x) = – g(x), ∀ x ∈ Dg.
Từ hình vẽ ta thấy đồ thị hàm số g(x) = x3 nhận gốc tọa độ O làm tâm đối xứng.
Luyện tập 2 trang 24 Toán 11 Tập 1: Xét tính chẵn, lẻ của hàm số
Lời giải:
Biểu thức
Suy ra tập xác định của hàm số là D = ℝ \ {0}.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có:
Vậy là hàm số lẻ.
HĐ3 trang 24 Toán 11 Tập 1: So sánh:
a) sin(x + 2π) và sin x;
b) cos(x + 2π) và cos x;
c) tan(x + π) và tan x;
d) cot(x + π) và cot x.
Lời giải:
a) Ta có: sin(x + 2π) = sin[π + (x + π)] = – sin(x + π) = – sin(π + x) = – (– sin x) = sin x.
Vậy sin(x + 2π) = sin x.
b) Ta có: cos(x + 2π) = cos[π + (x + π)] = – cos(x + π) = – (– cos x) = cos x.
Vậy cos(x + 2π) = cos x.
c) Ta có: tan(x + π) = tan(π + x) = tan x.
Vậy tan(x + π) = tan x.
d) Ta có: cot(x + π) = cot(π + x) = cot x.
Vậy cot(x + π) = cot x.
Câu hỏi trang 24 Toán 11 Tập 1: Hàm số hằng f(x) = c (c là hằng số) có phải hàm số tuần hoàn không? Nếu hàm số tuần hoàn thì nó có chu kì không?
Lời giải:
Hàm số hằng f(x) = c (c là hằng số) có tập xác định D = ℝ.
Với T là số dương bất kì và với mọi x ∈ D, ta luôn có:
+) x + T ∈ D và x – T ∈ D;
+) f(x + T) = c = f(x) (vì f(x) là hàm số hằng nên với mọi x thì giá trị của hàm số đều có giá trị bằng c).
Vậy hàm số hằng f(x) = c (c là hằng số) là hàm số tuần hoàn với chu kì là một số dương bất kì.
Luyện tập 3 trang 25 Toán 11 Tập 1: Xét tính tuần hoàn của hàm số y = tan2x.
Lời giải:
Biểu thức tan 2x có nghĩa khi
Suy ra hàm số y = tan 2x có tập xác định là
Với mọi số thực x, ta có:
Vậy y = tan 2x là hàm số tuần hoàn với chu kì
3. Đồ thị và tính chất của hàm số y = sin x
HĐ4 trang 25 Toán 11 Tập 1: Cho hàm số y = sin x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = sin x trên đoạn [– π; π] bằng cách tính giá trị của sin x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của sin x với những x âm.
Bằng cách lấy nhiều điểm M(x; sin x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = sin x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = sin x như hình dưới đây.
Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = sin x.
Lời giải:
a) Hàm số y = f(x) = sin x có tập xác định là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– x) = – sin x = – f(x), ∀ x ∈ D.
Vậy y = sin x là hàm số lẻ.
b) Ta có:
Vì y = sin x là hàm số lẻ nên ,
Vậy ta hoàn thành được bảng như sau:
c) Quan sát Hình 1.14, ta thấy đồ thị hàm số y = sin x có:
+) Tập giá trị là [– 1; 1];
+) Đồng biến trên mỗi khoảng
Luyện tập 4 trang 26 Toán 11 Tập 1: Tìm tập giá trị của hàm số y = 2sin x.
Lời giải:
Ta có: – 1 ≤ sin x ≤ 1 với mọi x ∈ ℝ.
Suy ra 2 . (– 1) ≤ 2sin x ≤ 2 . 1 hay – 2 ≤ 2sin x ≤ 2 với mọi x ∈ ℝ.
Vậy hàm số y = 2sin x có tập giá trị là [– 2; 2].
Vận dụng 1 trang 26 Toán 11 Tập 1: Xét tình huống mở đầu.
a) Giải bài toán ở tình huống mở đầu.
b) Biết rằng quá trình hít vào xảy ra khi v > 0 và quá trình thở ra xảy ra khi v < 0.
Trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm nào thì người đó hít vào? người đó thở ra?
Lời giải:
a) Thời gian của một chu kì hô hấp đầy đủ chính là một chu kì tuần hoàn của hàm v(t) và là
Ta có: 1 phút = 60 giây.
Do đó, số chu kì hô hấp trong một phút của người đó là 60/6 = 10 (chu kì).
b) Ta có:
Mà
Mà với mọi x ∈ ℝ. Do đó,
+) Với t ∈ (0; 3) ta có
+) Với t ∈ (3; 5] ta có
Vậy trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm sau 0 giây đến trước 3 giây thì người đó hít vào và khoảng thời điểm sau 3 giây đến 5 giây thì người đó thở ra.
4. Đồ thị và tính chất của hàm số y = cos x
HĐ5 trang 26 Toán 11 Tập 1: Cho hàm số y = cos x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.
Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.
Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.
Lời giải:
a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.
Vậy y = cos x là hàm số chẵn.
b) Ta có:
Vì y = cos x là hàm số chẵn nên
Vậy ta hoàn thành được bảng như sau:
c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:
+) Tập giá trị là [– 1; 1];
+) Đồng biến trên mỗi khoảng (−π + k2π; k2π) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng (k2π; π + k2π) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).
Luyện tập 5 trang 27 Toán 11 Tập 1: Tìm tập giá trị của hàm số y = – 3cos x.
Lời giải:
Ta có: – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ.
Suy ra (– 3) . (– 1) ≥ – 3cos x ≥ (– 3) . 1 hay – 3 ≤ – 3cos x ≤ 3 với mọi x ∈ ℝ.
Vậy hàm số y = – 3cos x có tập giá trị là [– 3; 3].
Vận dụng 2 trang 27 Toán 11 Tập 1: Trong Vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), ωt + φ là pha của dao động tại thời điểm t và φ ∈ [–π; π] là pha ban đầu của dao động. Dao động điều hòa này có chu kì (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).
Giả sử một vật dao động điều hòa theo phương trình x(t) = – 5cos 4πt (cm).
a) Hãy xác định biên độ và pha ban đầu của dao động.
b) Tính pha của dao động tại thời điểm t = 2 (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?
Lời giải:
a) Ta có: – 5cos 4πt = 5cos(4πt + π).
Khi đó vật dao động điều hòa theo phương trình x(t) = 5cos(4πt + π) (cm) với biên độ dao động là A = 5 > 0 và pha ban đầu của dao động là φ = π.
b) Pha của dao động tại thời điểm t = 2 (giây) là ωt + φ = 4π . 2 + π = 9π.
Dao động điều hòa có chu kì là có nghĩa là khoảng thời gian để vật thực hiện một dao động toàn phần là 0,5 giây. Do đó, trong khoảng thời gian 2 giây, vật thực hiện được 2 : 0,5 = 4 dao động toàn phần.
5. Đồ thị và tính chất của hàm số y = tan x
HĐ6 trang 28 Toán 11 Tập 1: Cho hàm số y = tan x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng
Bằng cách lấy nhiều điểm M(x; tan x) với x ∈ và nối lại ta được đồ thị hàm số y = tan x trên khoảng
c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = tan x như hình dưới đây.
Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số y = tan x.
Lời giải:
a) Hàm số y = f(x) = tan x có tập xác định là
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = tan (– x) = – tan x = – f(x), ∀ x ∈ D.
Vậy y = tan x là hàm số lẻ.
b) Ta có: tan 0 = 0,
Vì y = tan x là hàm số lẻ nên
Vậy ta hoàn thành được bảng như sau:
c) Quan sát Hình 1.16, ta thấy đồ thị hàm số y = tan x có:
+) Tập giá trị là ℝ;
+) Đồng biến trên mỗi khoảng (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này).
Luyện tập 6 trang 29 Toán 11 Tập 1: Sử dụng đồ thị đã vẽ ở Hình 1.16, hãy xác định các giá trị của x trên đoạn
Lời giải:
Hàm số y = tan x nhận giá trị âm ứng với phần đồ thị nằm dưới trục hoành. Từ đồ thị ở Hình 1.16 ta suy ra trên đoạn thì y < 0 khi
6. Đồ thị và tính chất của hàm số y = cot x
HĐ7 trang 29 Toán 11 Tập 1: Cho hàm số y = cot x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).
Bằng cách lấy nhiều điểm M(x; cot x) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).
c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.
Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.
Lời giải:
a) Hàm số y = f(x) = cot x có tập xác định là D = ℝ \ {kπ | k ∈ ℤ}.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cot (– x) = – cot x = – f(x), ∀ x ∈ D.
Vậy y = cot x là hàm số lẻ.
b) Ta có:
Vậy ta hoàn thành được bảng như sau:
c) Quan sát Hình 1.17, ta thấy đồ thị hàm số y = cot x có:
+) Tập giá trị là ℝ;
+) Nghịch biến trên mỗi khoảng (kπ; π + kπ), k∈ Z (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).
Luyện tập 7 trang 30 Toán 11 Tập 1: Sử dụng đồ thị đã vẽ ở Hình 1.17, hãy xác định các giá trị của x trên đoạn để hàm số y = cot x nhận giá trị dương.
Lời giải:
Hàm số y = cot x nhận giá trị dương ứng với phần đồ thị nằm trên trục hoành. Từ đồ thị ở Hình 1.17 ta suy ra trên đoạn thì y > 0 khi
Bài tập
Bình Luận
Để Lại Bình Luận Của Bạn