Luyện tập chung bài 12 | Toán 8 - Tập 1 | Chương III. Tứ giác - Lớp 8 - Kết Nối Tri Thức Với Cuộc Sống

Luyện tập chung bài 12

Nội Dung Chính


(Trang 62)

Ví dụ 1

Gọi E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA của hình bình hành ABCD. Hỏi EFGH là hình gì? Vì sao?

hinh-anh-luyen-tap-chung-bai-12-7164-0

Hình 3.37

Giải (H.3.37)

Theo giả thiết, E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA của hình bình hành ABCD nên  hinh-anh-luyen-tap-chung-bai-12-7164-1; hinh-anh-luyen-tap-chung-bai-12-7164-2.

Hai tam giác AHE và CFG có hinh-anh-luyen-tap-chung-bai-12-7164-3 (hai góc đối của hình bình hành ABCD),

AH=CF, AE=CG (chứng minh trên).

Vậy △AHE = △CFG (c.g.c), suy ra HE=FG. Tương tự, GH=EF

Tứ giác EGFH có GH=EF, HE=FG nên tứ giác đó là hình bình hành.

Ví dụ 2 Tính diện tích hình bình hành ABCD có đường chéo AC vuông góc với cạnh AD, biết AC = 4 cm, AD = 3 cm.

hinh-anh-luyen-tap-chung-bai-12-7164-4

Hình 3.38

Giải (H.3.38)

Theo giả thiết, ABCD là hình bình hành nên BC II AD, BC = AD (= 3 cm). Mặt khác, AD ⊥ AC (giả thiết) suy ra BC ⊥ AC.

Ta có △ABC vuông tại C và △ADC vuông tại A nên:

hinh-anh-luyen-tap-chung-bai-12-7164-5

   (hinh-anh-luyen-tap-chung-bai-12-7164-6)

hinh-anh-luyen-tap-chung-bai-12-7164-7   (hinh-anh-luyen-tap-chung-bai-12-7164-8)

Vậy diện tích hình bình hành ABCD là 12hinh-anh-luyen-tap-chung-bai-12-7164-9.

(Trang 63)

BÀI TẬP

3.19. Trong các tứ giác ở Hình 3.39, tứ giác nào là hình bình hành? Vì sao?

hinh-anh-luyen-tap-chung-bai-12-7164-10

Hình 3.39

3.20. Cho hình bình hành ABCD. Lấy điểm M thuộc cạnh AB và điểm N thuộc cạnh CD sao cho AM = CN. Chứng minh rằng:

a) AN = CM;                b) hinh-anh-luyen-tap-chung-bai-12-7164-11 = hinh-anh-luyen-tap-chung-bai-12-7164-12.

3.21. Vẽ tứ giác ABCD theo hướng dẫn sau:

Bước 1. Vẽ đoạn thẳng AB và đường thẳng a song song với AB.

Bước 2. Lấy điểm C ∈ a.

Bước 3. Trên a chọn D sao cho CD = AB và A, D nằm cùng phía đối với BC. Hãy giải thích tại sao tứ giác ABCD là hình bình hành.

3.22. Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.

a) Hỏi tia phân giác của góc A cắt cạnh CD hay cạnh BC?

b) Tính khoảng cách từ giao điểm đó đến điểm C.

3.23. Cho hình bình hành ABCD. Lấy điểm E sao cho B là trung điểm của AE, lấy điểm F sao cho C là trung điểm của DF. Chứng minh rằng:

a) Hai tứ giác AEFD, ABFC là những hình bình hành;

b) Các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau.

3.24. Cho ba điểm không thẳng hàng.

a) Tìm một điểm sao cho nó cùng với ba điểm đã cho là bốn đỉnh của một hình bình hành. Hãy vẽ hình và mô tả cách tìm.

b) Hỏi tìm được bao nhiêu điểm như vậy?

Tin tức mới


Đánh giá

Luyện tập chung bài 12 | Toán 8 - Tập 1 | Chương III. Tứ giác - Lớp 8 - Kết Nối Tri Thức Với Cuộc Sống

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Toán 8 - Tập 1

  1. Chương I: Đa thức
  2. Chương II: Hằng đẳng thức đáng nhớ và ứng dụng
  3. Chương III. Tứ giác
  4. Chương IV: Định lí Thalès
  5. Chương V: Dữ liệu và biểu đồ
  6. Hoạt động thực hành trải nghiệm
  7. Bảng tra cứu thuật ngữ

Tin tức mới

Bộ Sách Lớp 8

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Chân Trời Sáng Tạo

Bộ sách giáo khoa của Nhà xuất bản Chân Trời Sáng Tạo

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Kết Nối Tri Thức Với Cuộc Sống

Lớp 1

Sách giáo khoa dành cho lớp 1

Lớp 6

Sách giáo khoa dành cho lớp 6

Lớp 5

Sách giáo khoa dành cho lớp 5

Lớp 4

Sách giáo khoa dành cho lớp 4

Lớp 2

Sách giáo khoa dành cho lớp 2

Lớp 3

Sách giáo khoa dành cho lớp 3

Lớp 7

Sách giáo khoa dành cho lớp 7

Lớp 8

Sách giáo khoa dành cho lớp 8

Lớp 9

Sách giáo khoa dành cho lớp 9

Lớp 10

Sách giáo khoa dành cho lớp 10

Lớp 11

Sách giáo khoa dành cho lớp 11

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.