Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số | Bài giải GIẢI TÍCH 12 | CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ - Lớp 12 - Sách Bài Giải

Giải câu hỏi và bài tập SGK Giải tích 12.


Câu hỏi 1 trang 32 SGK

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số đã học

y = ax + b              y = ax2 + bx + c

theo sơ đồ trên.

Lời giải:

* Hàm số y = ax + b

Trường hợp a > 0

1. TXĐ: D = ℝ.

2. Sự biến thiên.

y’ = a > 0. Vậy hàm số đồng biến trên toàn bộ ℝ.

Ta có:  

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-0

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-1

3. Vẽ đồ thị

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-2

Trường hợp a < 0

1. TXĐ: D = ℝ.

2. Sự biến thiên.

y’ = a < 0. Vậy hàm số đồng biến trên toàn bộ ℝ.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-3

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-4

3. Vẽ đồ thị

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-5

* Hàm số y = ax2 + bx + c

Trường hợp a > 0

1. TXĐ: D = ℝ.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = −b/2a

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-6

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-7

Hàm số nghịch biến trên khoảng (-∞, −b/2a).

Hàm số đồng biến trên khoảng [−b/2a, +∞].

Hàm số đạt cực tiểu bằng −Δ/4a tại x = −b/2a.

3. Vẽ đồ thị:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-8

Trường hợp a < 0

1. TXĐ: D = ℝ.

2. Sự biến thiên.

y’ = 2ax + b. Cho y’ = 0 thì x = −b/2a.

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-9

Hàm số đồng biến trên khoảng (-∞, −b/2a).

Hàm số nghịch biến trên khoảng [−b/2a, +∞].

Hàm số đạt cực đại bằng −Δ/4a tại x = −b/2a.

3. Vẽ đồ thị:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-10

Câu hỏi 2 trang 33 SGK

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x3 + 3x2 – 4. Nêu nhận xét về đồ thị của hàm số này với đồ thị của hàm số khảo sát trong Ví dụ 1.

Lời giải:

1.TXĐ: D = R.

2. Sự biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-11

y’ = -3x2 + 6x. Cho y’ = 0 ⇒ x = 0 hoặc x = 2.

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-12

Hàm số đồng biến trên khoảng (0 , 2)

Hàm số nghịch biến trên các khoảng (-∞ , 0), (2 ,+ ∞).

Hàm số đạt cực đại bằng 0 tại x = 2.

Hàm số đạt cực tiểu bằng -4 tại x = 0.

3. Đồ thị

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-13

Nhận xét: hai đồ thị đối xứng nhau qua Oy.

Câu hỏi 3 trang 35 SGK

Khảo sát sự biến thiên và vẽ đồ thị hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-14

Lời giải:

1.TXĐ: D = ℝ.

2. Sự biến thiên:

Ta có: y’ = x2 – 2x + 1 = (x - 1)2 ≥ 0 với mọi x.

Vậy hàm số đồng biến trên toàn bộ ℝ.

Cho y’ = 0 ⇒ x = 1.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-15

Bảng biến thiên

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-16

3. Đồ thị

 

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-17

Câu hỏi 4 trang 36 SGK

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x4 + 2x2 + 3.

Bằng đồ thị, biện luận theo m số nghiệm của phương trình -x4 + 2x2 + 3 = m.

Lời giải:

1.TXĐ: D = R.

2. Sự biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-18

y’ = -4x3 + 4x. Cho y’ = 0 ⇒ x = 0 hoặc x = ±1.

Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-19

Hàm số đồng biến trên: (-∞ ,-1), (0 , 1).

Hàm số nghịch biến trên: (-1 , 0), (1 , +∞).

Hàm số đạt cực đại bằng 4 tại x = -1 và x = 1.

Hàm số đạt cực tiểu bằng 3 tại x = 0.

3. Đồ thị

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-20

Giải biện luận phương trình -x4 + 2x2 + 3 = m.

Số giao điểm của hai đồ thị y = -x4 + 2x2 + 3 và y = m là số nghiệm của phương trình trên.

Với m > 4. Hai đồ thị không giao nhau nên phương trình vô nghiệm.

Với m = 4 và m < 3. Hai đồ thị giao nhau tại 2 điểm phân biệt nên phương trình có hai nghiệm phân biệt.

Với m = 3. Hai đồ thị giao nhau tại 3 điểm phân biệt nên phương trình có ba nghiệm phân biệt.

Với 3 < m < 4. Hai đồ thị giao nhau tại 4 điểm phân biệt nên phương trình có bốn nghiệm phân biệt.

Câu hỏi 5 trang 38 SGK

Lấy một ví dụ về hàm số có dạng y = ax4 + bx2 + c sao cho phương trình y’ = 0 chỉ có một nghiệm.

Lời giải:

Ví dụ hàm số y = x4. Có đạo hàm y’ = 4x3. Cho y’ = 0 thì x = 0.

Câu hỏi 6 trang 42 SGK

Tìm tọa độ giao điểm của đồ thị hai hàm số

y = x2 + 2x – 3

y = -x2 – x + 2.

Lời giải:

Xét phương trình tương giao:

-x2 – x + 2 = x2 + 2x – 3

⇔ 2x2 + 3x – 5 = 0

⇔ x = 1 hoặc x =−5/2

Với x = 1 thì y = 12 + 2.1 – 3 = 1 + 2 – 3 = 0

Với x = −5/2 thì y = (−5/2)2 + 2.(−5/2) − 3 = −7/4

Vậy tọa độ giao điểm là (1 , 0) và (−5/2 , −7/4)

Bài 1 trang 43 SGK

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:

a) y = 2 + 3x - x3;

b) y = x3 + 4x2 + 4x;

c) y = x3 + x2 + 9x;

d) y = -2x3 + 5.

Lời giải:

a) Hàm số y = -x3 + 3x + 2.

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = -3x2 + 3.

y' = 0 ⇔ x = ±1.

Trên các khoảng (-∞ ; -1) và (1 ; +∞), y’ < 0 nên hàm số nghịch biến.

Trên (-1 ; 1), y’ > 0 nên hàm số đồng biến.

+ Cực trị :

Hàm số đạt cực đại tại x = 1, y = 4 ;

Hàm số đạt cực tiểu tại x = -1 ; yCT = 0.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-21

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-22

3) Đồ thị:

Ta có : 2 + 3x – x3 = 0 ⇔hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-23

Vậy giao điểm của đồ thị với trục Ox là (2 ; 0) và (-1 ; 0).

y(0) = 2 ⇒ giao điểm của đồ thị với trục Oy là (0 ; 2).

Đồ thị hàm số :

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-24

b) Hàm số y = x3 + 4x2 + 4x.

1) Tập xác định: D = ℝ

2) Sự biến thiên:

y' = 3x2 + 8x + 4;

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-25

Trên các khoảng (-∞ ; -2) và (−2/3 ; +∞) thì y’ > 0 nên hàm số đồng biến.

Trên (-2 ; −2/3) thì y’ < 0 nên hàm số nghịch biến.

+ Cực trị:

Hàm số đạt cực đại tại x = -2, yCD = 0;

Hàm số đạt cực tiểu tại x = −2/3; yCT = −32/27.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-26

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-27

3) Đồ thị:

Ta có : x3 + 4x2 + 4x = 0 ⇔ hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-28

Vậy giao điểm của đồ thị với Ox là (0 ; 0) và (-2 ; 0).

Đồ thị hàm số :

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-29

c) Hàm số y = x3 + x2 + 9x.

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = 3x2 + 2x + 9 > 0

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-30

⇒ Hàm số luôn đồng biến trên R.

+ Hàm số không có cực trị.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-31

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-32

3) Đồ thị hàm số.

+ Đồ thị hàm số cắt trục Ox tại (0 ; 0).

+ Đồ thị hàm số đi qua (1 ; 11) ; (-1 ; -9)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-33

d) Hàm số y = 2x3 + 5.

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = 6x2 ≥ 0 ∀ x ∈ R

Hàm số đồng biến trên R

Hàm số không có cực trị.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-34

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-35

3) Đồ thị:

Đồ thị hàm số cắt trục tung tại (0 ; 5)

Đồ thị hàm số đi qua điểm (1 ; 7) và (-1 ; 3)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-36

Kiến thức áp dụng

Các bước khảo sát hàm số và vẽ đồ thị:

1. Tìm tập xác định.

2. Khảo sát sự biến thiên

+ Tính y’

⇒ Chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tính các giới hạn

Từ đó suy ra Bảng biến thiên.

3. Vẽ đồ thị hàm số.

Bài 2 trang 43 SGK

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-37

Lời giải:

a) Hàm số y = -x4 + 8x2 – 1.

1) Tập xác định: D = ℝ

2) Sự biến thiên:

+ Chiều biến thiên:

y' = -4x3 + 16x = -4x(x2 - 4)

y' = 0 ⇔ -4x(x2 - 4) = 0 ⇔ x = 0; x = ±2

Trên khoảng (-∞ ; -2) và (0 ; 2), y’ > 0 nên hàm số đồng biến.

Trên các khoảng (-2 ; 0) và (2 ; +∞), y’ < 0 nên hàm số nghịch biến.

+ Cực trị:

Hàm số đạt cực đại tại x = 2 và x = -2; y = 15

Hàm số đạt cực tiểu tại x = 0; yCT = -1.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-38

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-39

3) Đồ thị:

+ Hàm số đã cho là hàm số chẵn, vì:

y(-x) = -(-x)4 + 8(-x)2 - 1 = -x4 + 8x2 - 1 = y(x)

Suy ra đồ thị nhận Oy làm trục đối xứng.

+ Giao với Oy tại điểm (0 ; -1) (vì y(0) = -1).

+ Đồ thị hàm số đi qua (-3 ; -10) và (3 ; - 10).

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-40

b) Hàm số y = x4 – 2x2 + 2.

1) Tập xác định: D = ℝ

2) Sự biến thiên:

+ Chiều biến thiên:

y' = 4x3 - 4x = 4x(x2 - 1)

y' = 0 ⇔ 4x(x2 - 1) = 0 ⇔ x = 0 ; x = ±1.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-41

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-42

Kết luận:

Hàm số đồng biến trên khoảng (-1 ; 0) và (1 ; +∞).

Hàm số nghịch biến trên các khoảng (-∞ ; -1) và (0 ; 1).

Đồ thị hàm số có hai điểm cực tiểu là: (-1 ; 1) và (1 ; 1).

Đồ thị hàm số có điểm cực đại là: (0 ; 2)

3) Đồ thị:

+ Hàm số chẵn nên đồ thị hàm số nhận trục Oy là trục đối xứng.

+ Đồ thị hàm số cắt trục tung tại (0 ; 2).

+ Đồ thị hàm số đi qua (-1 ; 1) và (1 ; 1).

+ Đồ thị hàm số:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-43

c) Hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-44

1) Tập xác định: D = ℝ

2) Sự biến thiên:

+ y' = 2x3 + 2x = 2x(x2 + 1)

   y' = 0 ⇔ 2x(x2 + 1) = 0 ⇔ x = 0

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-45

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-46

Kết luận:

Hàm số đồng biến trên khoảng (0 ; +∞).

Hàm số nghịch biến trên các khoảng (-∞ ; 0).

Đồ thị hàm số có điểm cực đại là:hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-47.

3) Đồ thị:

+ Hàm số chẵn nên nhận trục Oy là trục đối xứng.

+ Hàm số cắt trục hoành tại điểm (-1 ; 0) và (1 ; 0).

+ Hàm số cắt trục tung tại điểmhinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-48

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-49

d) Hàm số y = -2x2 – x4 + 3.

1) Tập xác định: D = ℝ

2) Sự biến thiên:

+ Chiều biến thiên:

y' = -4x - 4x3 = -4x(1 + x2)

y' = 0 ⇔ -4x(1 + x2) = 0 ⇔ x = 0

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-50

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-51

Kết luận:

Hàm số đồng biến trên khoảng (-∞ ; 0).

Hàm số nghịch biến trên các khoảng (0 ; +∞).

Đồ thị hàm số có điểm cực đại là: (0 ; 3).

3) Đồ thị:

+ Hàm số là hàm số chẵn nên nhận trục Oy là trục đối xứng.

+ Hàm số cắt trục Ox tại (-1 ; 0) và (1 ; 0).

+ Hàm số cắt trục Oy tại (0 ; 3).

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-52

Bài 3 trang 43 SGK

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-53

Lời giải:

a) Hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-54

1) Tập xác định: D = ℝ \ {1}

2) Sự biến thiên:

+ Chiều biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-55

Suy ra hàm số nghịch biến trên (-∞ ; 1) và (1 ; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-56

Suy ra x = 1 là tiệm cận đứng.

Lại có:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-57

Suy ra y = 1 là tiệm cận ngang.

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-58

3) Đồ thị:

+ Giao với Oy: (0 ; -3)

+ Giao với Ox: (-3 ; 0)

+ Đồ thị nhận (1 ; 1) là tâm đối xứng.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-59

b) Hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-60

1) Tập xác định: D = ℝ \ {2}

2) Sự biến thiên:

+ Chiều biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-61

Suy ra hàm số đồng biến trên (-∞ ; 2) và (2 ; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-62

Suy ra x = 2 là tiệm cận đứng của đồ thị hàm số.

Lại có:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-63

Suy ra y = -1 là tiệm cận ngang.

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-64

3) Đồ thị:

+ Giao với Oy: (0 ; −1/4)

+ Giao với Ox: (1/2 ; 0)

+ Đồ thị hàm số nhận (2; -1) là tâm đối xứng.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-65

c) Hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-66

1) Tập xác định: D = ℝ \ {-1/2}

2) Sự biến thiên:

+ Chiều biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-67

Suy ra hàm số nghịch biến trên (-∞; −1/2) và (−1/2 ; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-68

Suy ra hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-69  là tiệm cận đứng của đồ thị hàm số.

Lại có:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-70

Suy ra hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-71 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-72

3) Đồ thị:

+ Giao với Oy: (0 ; 2)

+ Giao với Ox: (2 ; 0)

+ Đồ thị hàm số nhận (−1/2 ; −1/2) là tâm đối xứng.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-73

Bài 4 trang 44 SGK

Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:

a) x3 - 3x2 + 5 = 0;

b) -2x3 + 3x2 - 2 = 0;

c) 2x2 - x4 = -1.

Lời giải:

a) Xét y = f(x) = x3 - 3x2 + 5 (1)

- TXĐ: D = R

- Sự biến thiên:

+ Chiều biến thiên:

f'(x) = 3x2 - 6x = 3x(x - 2)

f'(x) = 0 ⇔ x = 0 ; x = 2

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-74

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-75

- Đồ thị:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-76

Đồ thị hàm số y = f(x) cắt trục hoành tại 1 điểm duy nhất.

⇒ phương trình x3 - 3x2 + 5 = 0 chỉ có 1 nghiệm duy nhất.

b) Xét hàm số y = f(x) = -2x3 + 3x2 – 2.

- TXĐ: D = R

- Sự biến thiên:

+ Chiều biến thiên:

y' = -6x2 + 6x = -6x(x - 1)

y' = 0 ⇔ x = 0 ; x = 1

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-77

+ Bảng biến thiên:

 

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-78

- Đồ thị:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-79

Đồ thị hàm số y = f(x) cắt trục hoành tại 1 điểm duy nhất

⇒ phương trình f(x) = 0 có nghiệm duy nhất.

Vậy phương trình -2x3 + 3x2 - 2 = 0 chỉ có một nghiệm.

c) Xét hàm số y = f(x) = 2x2 - x4

- TXĐ: D = ℝ

- Sự biến thiên:

+ Chiều biến thiên:

y' = 4x - 4x3 = 4x(1 - x2)

y' = 0 ⇔ x = 0 ; x = ±1

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-80

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-81

- Đồ thị:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-82

Đồ thị hàm số y = f(x) cắt đường thẳng y = -1 tại hai điểm.

Suy ra phương trình f(x) = -1 có hai nghiệm phân biệt.

Vậy phương trình đã cho có 2 nghiệm phân biệt.

Kiến thức áp dụng

Số nghiệm của phương trình f(x) = m phụ thuộc vào số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Bài 5 trang 44 SGK

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

y = -x3 + 3x + 1

b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số m:

x3 - 3x + m = 0

Lời giải:

a) Khảo sát hàm số y = -x3 + 3x + 1

- Tập xác định: D = R

- Sự biến thiên:

+ Chiều biến thiên:

y' = -3x2 + 3 = -3(x2 - 1)

y' = 0 ⇔ -3(x2 - 1) = 0 ⇔ x = ±1.

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-83

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-84

Kết luận:

Hàm số đồng biến trên khoảng (-1 ; 1).

Hàm số nghịch biến trên các khoảng (-∞ ; -1) và (1 ; +∞).

Hàm số đạt cực tiểu tại x = -1 ; yCT = -1.

Hàm số đạt cực đại tại x = 1 ; y = 3.

- Đồ thị:

+ Giao với Oy: (0 ; 1).

+ Đồ thị (C) đi qua điểm (-2 ; 3), (2 ;-1).

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-85

b) Ta có: x3 - 3x + m = 0 (*)

⇔ -x3 + 3x + 1 = m + 1

Số nghiệm của phương trình (*) phụ thuộc số giao điểm của đồ thị hàm số y = -x3 + 3x + 1 và đường thẳng y = m + 1.

Kết hợp với quan sát đồ thị hàm số ta có:

+ Nếu m + 1 < –1 ⇔ m < –2

⇒ (C ) cắt (d) tại 1 điểm.

⇒ phương trình (*) có 1 nghiệm.

+ Nếu m + 1 = –1 ⇔ m = –2

⇒ (C ) cắt (d) tại 2 điểm

⇒ phương trình (*) có 2 nghiệm.

+ Nếu –1 < m + 1 < 3 ⇔ –2 < m < 2

⇒ (C ) cắt (d) tại 3 điểm.

⇒ phương trình (*) có 3 nghiệm.

+ Nếu m + 1 = 3 ⇔ m = 2

⇒ (C ) cắt (d) tại 2 điểm.

⇒ phương trình (*) có hai nghiệm.

+ Nếu m + 1 > 3 ⇔ m > 2

⇒ (C ) cắt (d) tại 1 điểm

⇒ phương trình (*) có một nghiệm.

Kết luận:

+ Với m < -2 hoặc m > 2 thì phương trình có 1 nghiệm.

+ Với m = -2 hoặc m = 2 thì phương trình có 2 nghiệm.

+ Với -2 < m < 2 thì phương trình có 3 nghiệm.

Kiến thức áp dụng

- Các bước khảo sát hàm số và vẽ đồ thị:

1. Tìm tập xác định.

2. Khảo sát sự biến thiên

+ Tính y’

⇒ Chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tính các giới hạn

Từ đó suy ra Bảng biến thiên.

3. Vẽ đồ thị hàm số.

- Số nghiệm của phương trình f(x) = m phụ thuộc vào số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Bài 6 trang 44 SGK

Cho hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-86

a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Xác định m để tiệm cận đứng của đồ thị đi qua A(-1, √2).

c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

Lời giải:

TXĐ: D = ℝ \ {hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-87}

a) Với mọi tham số m ta có:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-88

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Ta có:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-89

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-90

 là tiệm cận đứng của đồ thị hàm số.

+ Tiệm cận đứng đi qua A(-1; √2)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-91⇔ m = 2.

Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A(-1; √2)

c) Với m = 2 ta được hàm số: hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-92

- TXĐ: D = ℝ \ {-1}

- Sự biến thiên:

+ Chiều biến thiên: Theo kết quả câu a)

Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞)

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-93

Suy ra đồ thị có tiệm cận đứng là x = -1.

Lại có

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-94

Suy ra đồ thị có tiệm cận ngang là y = 1.

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-95

- Đồ thị:

+ Đồ thị cắt trục hoành tại (1/2 ; 0).

+ Đồ thị cắt trục tung tại (0 ; -1/2).

+ Đồ thị nhận I(-1 ; 1) là tâm đối xứng.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-96

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm trên khoảng K xác định thì :

f(x) đồng biến nếu f’(x) > 0 với ∀ x ∈ K.

+ Đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = f(x) nếu có hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-97  hoặc  hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-98.

Bài 7 trang 44 SGK

Cho hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-99.

a) Với giá trị nào của tham số m, đồ thị của hàm đi qua điểm (-1 ; 1)?

b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.

c) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 7/4.

Lời giải:

a) Đồ thị hàm số qua điểm (-1 ; 1)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-100

Vậy m = 1/4 thì đồ thị hàm số đi qua điểm (-1 ; 1).

b) Với m = 1, hàm số trở thành hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-101

- TXĐ: D = ℝ

- Sự biến thiên:

+ Chiều biến thiên:

y' = x3 + x = x(x2 + 1)

y' = 0 ⇔ x(x2 + 1) ⇔ x = 0

+ Giới hạn:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-102

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-103

Kết luận:

Hàm số đồng biến trên (0 ; +∞)

Hàm số nghịch biến trên (-∞ ; 0)

Hàm số có điểm cực tiểu là (0 ; 1).

- Đồ thị:

+ Đồ thị nhận trục Oy là trục đối xứng.

+ Đồ thị cắt trục tung tại (0 ; 1).

+ Đồ thị hàm số đi qua (-1 ; 1,75); (1 ; 1,75); (-2 ; 7); (2 ; 7).

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-104

c) Điểm thuộc (C) có tung độ bằng 7/4 nên hoành độ của điểm đó là nghiệm của phương trình:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-105

Có: y' = x3 + x

+ Phương trình tiếp tuyến của (C) tại hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-106:

y’(1) = 2

⇒ Phương trình tiếp tuyến: hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-107  hay hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-108

+ Phương trình tiếp tuyến của (C) tại hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-109:

y’(-1) = -2.

⇒ Phương trình tiếp tuyến: hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-110

hay y = hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-111

Kiến thức áp dụng

- Các bước khảo sát hàm số và vẽ đồ thị:

1. Tìm tập xác định.

2. Khảo sát sự biến thiên

+ Tính y’

⇒ Chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tính các giới hạn

Từ đó suy ra Bảng biến thiên.

3. Vẽ đồ thị hàm số.

 

- Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại M(y0; f(y0)): y = f’(y0)(x – y0) + f(y0)

Bài 8 trang 44 SGK

Cho hàm số 

y = x3 + (m + 3)x2 + 1 - m (m là tham số)

có đồ thị (Cm).

a) Xác định m để hàm số có điểm cực đại là x = -1.

b) Xác định m để đồ thị (Cm) cắt trục hoành tại x = -2.

Lời giải:

a) Xét hàm số y = x3 + (m + 3)x2 + 1 – m.

+ TXĐ : D = R.

+ y’ = 3x2 + 2(m + 3).x

⇒ y’’ = 6x + 2(m + 3).

+ Hàm số có điểm cực đại là x = -1

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-112

Vậy với hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-113 thì hàm số có điểm cực đại là x = -1.

b) Đồ thị (Cm) cắt trục hoành tại x = -2

⇔ y(-2) = 0

⇔ (-2)3 + (m + 3)(-2)2 + 1 - m = 0

⇔ -8 + 4(m + 3) + 1 - m = 0

⇔ 3m + 5 = 0

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-114

Vậy hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-115

 thì đồ thị (Cm) cắt trục hoành tại x = - 2.

Kiến thức áp dụng

Hàm số y = f(x) có đạo hàm cấp hai trong khoảng K, khi đó, với y0 ∈ K ta có:

Nếu f’(y0) = 0 và f’’(y0) < 0 thì y0 là điểm cực đại.

Bài 9 trang 44 SGK

Cho hàm số hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-116(m là tham số)

có đồ thị (G).

a) Xác định m để đồ thị (G) đi qua điểm (0 ; -1).

b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m tìm được.

c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.

Lời giải:

a) Đồ thị (G) đi qua điểm (0 ; -1)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-117

b) Với m = 0, hàm số trở thành: hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-118

- TXĐ: D = R \ {1}

- Sự biến thiên:

+ Chiều biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-119

⇒ Hàm số nghịch biến trên (-∞; 1) và (1; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-120

⇒ x = 1 là tiệm cận đứng của đồ thị hàm số.

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-121

⇒ y = 1 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-122

- Đồ thị:

+ Giao điểm với Ox: (-1 ; 0)

+ Giao điểm với Oy: (0 ; -1)

hinh-anh-bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so-3590-123

c) Đồ thị cắt trục tung tại điểm P(0 ; -1), khi đó phương trình tiếp tuyến tại điểm P(0 ; -1) là:

y = y'(0).(x – 0) – 1

hay y = -2x – 1

Vậy phương trình tiếp tuyến cần tìm là: y = -2x – 1.

 

Tin tức mới


Đánh giá

Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số | Bài giải GIẢI TÍCH 12 | CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ - Lớp 12 - Sách Bài Giải

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Tin tức mới

Bộ Sách Lớp 12

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

Sách Sách Bài Giải

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.