Ôn tập chương IV | Bài giải GIẢI TÍCH 12 | CHƯƠNG IV. SỐ PHỨC - Lớp 12 - Sách Bài Giải

Giải câu hỏi và bài tập SGK Giải tích 12.


Bài 1 trang 143 SGK

Thế nào là phần thực, phần ảo, modun của số phức?

Viết công thức tính mô đun của số phức theo phần thực phần ảo của nó?

Lời giải:

Mỗi số phức là một biểu thức z = a + bi với a, b ∈ R, i2 = -1

- Số thực a là phần thực của số phức: z = a + bi

- Số thực b là phần ảo của số phức z = a + bi

- Môđun của số phức z = a + bi là hinh-anh-on-tap-chuong-iv-3640-0

Bài 2 trang 143 SGK

Tìm mối liên hệ giữa khái niệm môdun và khái niệm giá trị tuyệt đối của một số thực.

Lời giải:

Mỗi số thực a là một số phức có phần ảo bằng 0.

Ta có: a ∈ R ⇒ a = a + 0i

Mô đun của số thực a là:

hinh-anh-on-tap-chuong-iv-3640-1

Như vậy với một số thực, khái niệm mô đun và khái niệm giá trị tuyệt đối là đồng nhất.

Bài 3 trang 143 SGK

Nêu định nghĩa số phức liên hợp của số phức z. Số phức nào bằng số phức liên hợp của nó?

Lời giải:

Cho số phức z = a + bi (a, b ∈ R) thì số phức liên hợp của số phức z kí hiệu là z = a − bi

Số phức z bằng số phức liên hợp hinh-anh-on-tap-chuong-iv-3640-2 của nó khi và chỉ khi z là số thực.

Bài 4 trang 143 SGK

Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình a), b), c) sau:

hinh-anh-on-tap-chuong-iv-3640-3

Lời giải:

a) Mỗi số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình a phải thỏa mãn điều kiện: phần thực a ≥ 1 ( phần ảo b bất kì).

b) Số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình b phải thỏa mãn điều kiện : phần ảo b ∈ [-1; 2] ( phần thực a bất kì).

c) Số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình c phải thỏa mãn 2 điều kiện:

+ Mô đun của z là hinh-anh-on-tap-chuong-iv-3640-4

+ Phần thực a ∈ [-1; 1]

Bài 5 trang 143 SGK

Trên mặt phẳng tọa độ, tìm tập hợp biểu diễn của các số phức z thỏa mãn điều kiện:

a) Phần thực của z bằng 1

b) Phần ảo của z bằng -2

c) Phần thực của z thuộc đoạn [-1; 2], phần ảo của z thuộc đoạn [0; 1]

d) |z| ≤ 2

Lời giải:

Điểm M(x; y) biểu diễn số phức z = x + yi.

a) Phần thực của z bằng 1

⇔ x = 1

Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = 1.

b) Phần ảo của z bằng -2

⇔ y = -2

Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng y = -2.

c) Phần thực của z thuộc đoạn [-1; 2]

⇔ -1 ≤ x ≤ 2.

phần ảo của z thuộc đoạn [0; 1]

⇔ 0 ≤ y ≤ 1.

Vậy tập hợp các điểm biểu diễn số phức z là hình gạch sọc dưới đây:

hinh-anh-on-tap-chuong-iv-3640-5

Vậy tập hợp các điểm biểu diễn số phức z là hình tròn tâm O(0; 0), bán kính R = 2.

hinh-anh-on-tap-chuong-iv-3640-6

Bài 6 trang 143 SGK

Tìm các số thực x, y sao cho:

a) 3x + yi = 2y + 1 + (2 – x)i;

b) 2x + y – 1 = (x + 2y – 5)i.

Lời giải:

a) Ta có: 3x + yi = 2y + 1 + (2 – x)i

hinh-anh-on-tap-chuong-iv-3640-7

Vậy x = 1; y = 1.

b) Ta có: 2x + y – 1 = (x + 2y – 5)i.

Hay (2x + y – 1 ) + 0i = 0 + (x + 2y – 5)i.

hinh-anh-on-tap-chuong-iv-3640-8

Vậy x = –1 và y = 3.

Bài 7 trang 143 SGK

Chứng tỏ rằng với mọi số phức z, ta luôn có phần thực và phần ảo của z không vượt quá môdun của nó.

Lời giải:

hinh-anh-on-tap-chuong-iv-3640-9

Vậy với mọi số phức thì phần thực và phần ảo của nó không vượt quá mô đun của nó.

Bài 8 trang 143 SGK

Thực hiện các phép tính sau:

hinh-anh-on-tap-chuong-iv-3640-10

Lời giải:

a) (3 + 2i).[(2 – i) + (3 – 2i)]

= (3 + 2i).(5 – 3i)

= 3.5 + 3.(– 3i) + 2i.5 + 2i.(– 3i)

= 15 – 9i + 10i – 6i2

= 21 + i                 (vì i2 = –1)

hinh-anh-on-tap-chuong-iv-3640-11

c) (1 + i)2 – (1 – i)2

= 1 + 2i + i2 – (1 – 2i + i2)

= 1+ 2i – 1 – 1 + 2i + 1    (vì i2 = –1)

= 4i

hinh-anh-on-tap-chuong-iv-3640-12

Bài 9 trang 144 SGK

Giải các phương trình sau trên tập số phức:

a) (3 + 4i)z + ( 1 – 3i) = 2 + 5i;

b) (4 + 7i)z – (5 – 2i) = 6iz.

Lời giải:

hinh-anh-on-tap-chuong-iv-3640-13

hinh-anh-on-tap-chuong-iv-3640-14

Bài 10 trang 144 SGK

Giải các phương trình sau trên tập số phức:

a) 3z2 + 7z + 8 = 0

b) z4 – 8 = 0

c) z4 – 1 = 0

Lời giải:

hinh-anh-on-tap-chuong-iv-3640-15

hinh-anh-on-tap-chuong-iv-3640-16

Bài 11 trang 144 SGK

Tìm hai số phức, biết tổng của chúng bằng 3 và tích của chúng bằng 4.

Lời giải:

Hai số phức có tổng bằng 3, tích bằng 4 là nghiệm của phương trình:

z2 – 3z + 4 = 0

Phương trình có Δ = 32 – 4.4 = -7 < 0

⇒ Phương trình có hai nghiệm: hinh-anh-on-tap-chuong-iv-3640-17

Vậy hai số cần tìm là hinh-anh-on-tap-chuong-iv-3640-18

Bài 12 trang 144 SGK

Cho hai số phức z1, z2. Biết rằng z1 + z2 và z1. z2 là hai số thực. Chứng minh rằng z1, z2 là hai nghiệm của một phương trình bậc hai với hệ số thực.

Lời giải:

Với các số phức z1, z2 cho trước. Khi đó z1, z2 là các nghiệm của phương trình:

(x – z1)(x – z2) = 0

Hay x2 – (z1 + z2).x + z1.z2 = 0 (*)

Theo giả thiết z1 + z2 và z1.z2 là hai số thực nên phương trình (*) là phương trình bậc hai với hệ số thực.

Kết luận: Phương trình x2 – (z1 + z2)x + z1.z2 = 0 là phương trình bậc hai với hệ số thực và nhận z1, z2 là nghiệm.

Bài tập trắc nghiệm

Bài 1 trang 144 SGK

Số nào trong các số sau là số thực?

hinh-anh-on-tap-chuong-iv-3640-19

Lời giải:

Ta xét các phương án:

hinh-anh-on-tap-chuong-iv-3640-20

Chọn đáp án B.

Bài 2 trang 144 SGK

Số nào trong các số sau là số thuần ảo?

hinh-anh-on-tap-chuong-iv-3640-21

Lời giải:

hinh-anh-on-tap-chuong-iv-3640-22

Chọn đáp án C.

Bài 3 trang 144 SGK

Đẳng thức nào trong các đẳng thức sau là đúng?

(A). i1977 = -1

(B). i2345 = i

(C). i2005 = 1

(D). i2006 = -i

Lời giải:

Ta có: i2 = -1 nên i4 = (i2)2 = (-1)2 = 1

Khi đó, i2345 = i4.586 + 1 = (i4)586.i = 1586. i = i.

Chọn đáp án B.

Bài 4 trang 144 SGK

Đẳng thức nào trong các đẳng thức sau là đúng?

(A) (1 + i)8 = -16;

(B) (1 + i)8 = 16i;

(C) (1 + i)8 = 16;

(D) (1 + i)8 = -16i;

Lời giải:

Ta có:

(1 + i)8 = [(1 + i)2]4

= (1 + 2i + i2)4

= (2i)4  (vì i2 = -1)

= 24.i4

= 24   (vì i2 = -1 nên i4 = (i2)2 = (-1)2 = 1)

= 16.

Chọn đáp án C.

Bài 5 trang 144 SGK

Biết rằng nghịch đảo của số phức z bằng số phức liên hợp của nó, trong các kết luận sau, kết luận nào là đúng?

(A). z ∈ R

(B). |z| = 1

(C). z là số thuần ảo

(D). |z| = -1

Lời giải:

hinh-anh-on-tap-chuong-iv-3640-23

Chọn đáp án B.

Bài 6 trang 144 SGK

Trong các kết luận sau, kết luận nào là sai?

A. Mô đun của số phức z là một số thực;

B. Mô đun của số phức z là một số phức;

C. Mô đun của số phức z là một số thực dương;

D. Mô đun của số phức z là một số thực không âm.

Lời giải:

Số phức z = 0 có môđun |z| = 0.

Chọn đáp án C.

Tin tức mới


Đánh giá

Ôn tập chương IV | Bài giải GIẢI TÍCH 12 | CHƯƠNG IV. SỐ PHỨC - Lớp 12 - Sách Bài Giải

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Tin tức mới

Bộ Sách Lớp 12

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

Sách Sách Bài Giải

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.