Bài 7. Phương trình mũ và lôgarit | Bài giải GIẢI TÍCH 12 (Nâng Cao) | CHƯƠNG II - HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT - Lớp 12 - Sách Bài Giải

Giải câu hỏi và bài tập SGK Giải tích 12 Nâng cao.


Bài 63 trang 123 SGK

Giải các phương trình sau:

a) (2 + √3)2x = 2 – √3;

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-0

c) 2.3x + 1 – 6.3x – 1 – 3x = 9;

d) log3(3x + 8) = 2 + x.

Lời giải:

a) (2 + √3)2x = 2 – √3

⇔ (2 + √3)2x = (2 + √3)-1

⇔ 2x = -1

⇔ x = -1/2

Vậy tập nghiệm của phương trình S = {-1/2}.

Cách khác:

(2 + √3)2x = 2 – √3

⇔ (2 – √3)-2x = 2 – √3

⇔ -2x = 1

⇔ x = -1/2

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-1

c) 2.3x + 1 – 6.3x – 1 – 3x = 9

⇔ 2.3x.3  – 6.3x.(1/3) – 3x = 9

⇔ 6.3x – 2.3x – 3x = 9

⇔ 3.3x = 9

⇔ 3x = 3

⇔ x = 1

Vậy S = {1}.

d) log3⁡(3x + 8) = 2 + x

⇔ 3x + 8 = 32 + x

⇔ 3x + 8 = 9.3x

⇔ 8.3x = 8

⇔ 3x = 1

⇔ x = 0

Vậy S = {0}.

Bài 64 trang 124 SGK

Giải các phương trình sau:

a) log2[x(x – 1)] = 1                                                                     b) log2⁡x + log2(x – 1 ) = 1

Lời giải:

a) Điều kiện: x.(x – 1) > 0 hay hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-2

Khi đó, log2[x(x – 1)] = 1

⇔ x.(x – 1) = 2

⇔ x2 – x – 2 = 0

⇔ x = -1 hoặc x = 2

Vậy nghiệm của phương trình đã cho là: x = -1; x = 2.

b) Điều kiện: hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-3

Khi đó, log2⁡x + log2⁡(x – 1) = 1

⇔ log2[x(x – 1)] = 1

⇔ x.(x – 1) = 2

⇔ x2 – x – 2 = 0

⇔ x = -1 (loại) hoặc x = 2

Vậy phương trình có một nghiệm là x = 2.

Bài 65 trang 124 SGK

Trên mặt mỗi chiếc radio đều có các vạch chia để người sử dụng dễ dàng chọn đúng song radio cần tìm. Biết vạch chia ở vị trị cách vạch tâm cũng bên trái một khoảng d(cm) thì ứng với tần số F = k.ad (kHz), trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng bên trái ứng với tần số 53kHz, vạch tậm cùng bên phải ứng với tần số 160kHz và hai vạch nàu cách nhau 12cm.

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-4

a) Tính k và a (tính a chính xác đến hàng phần nghìn)

b) Giả sử cho F, hãy giải thích Phương trình k.ad = F với ẩn d.

c) Áp dụng kết quả của b, hãy điền vào ô trống trong bảng sau (kết quả chính xác đến phần trăm).

F 53 60 80 100 120 140 160
d              

Lời giải:

a) Theo giả thiết ta có: d = 0 ⇒ F = 53 ⇔ k.a0 = 53 ⇔ k = 53

Và d = 12 ⇒ F = 160 ⇔ k.a12=160

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-5

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-6

c) Từ câu b) ⇒ d = 25,119.lgF – 43,312

(do yêu cầu kết quả tính chính xác đến hàng phần trăm)

Vậy ta có bảng:

F 53 60 80 100 120 140 160
d 0 1,35 4,49 6,93 8,91 10,60 12

Bài 66 trang 124 SGK

Giải các phương trình sau:

a) 2x + 1.5x = 200                                                                     b) 0,125.42x – 3 = (4√2)x

Lời giải:

a) 2x + 1.5x = 200

⇔ 2.10x = 200

⇔ 10x = 100

⇔ x = 2

Cách khác:

2x + 1.5x = 200

⇔ 2x + 1.5x = 23.52

⇔ 2x – 2.5x – 2 = 1

⇔ 10x – 2 = 1

⇔ x – 2 = 0

⇔ x = 2

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-7

Bài 67 trang 124 SGK

Giải các phương trình sau:

a) log2⁡x + log4⁡x = log1/2⁡√3                                                                     b) log√3⁡x.log3x.log9⁡x = 8

Lời giải:

a) log2⁡x + log4⁡x = log1/2⁡√3

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-8

b) log√3⁡x.log3x.log9⁡x = 8  Điều kiện: x > 0

⇔ log3⁡(1/2)x.log3⁡x.log32x = 8

⇔ 2log3⁡x.log3⁡x.(1/2)log3x = 8

⇔ (log3⁡x)3 = 8

⇔ log3⁡x = 2

⇔ x = 32 = 9

Kết hợp với điều kiện, vậy nghiệm của phương trình đã cho là x = 9.

Bài 68 trang 124 SGK

Giải các phương trình sau:

a) 3x+1 + 18.3 -x = 29                                                                     

b) 27x + 12x = 2.8x (Hướng dẫn: Chia cả hai vế cho 23x rồi đặt t = (3/2)x).

Lời giải:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-9

Đặt t = 3x (t > 0).

Phương trình trở thành:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-10

Phương trình trở thành: t3 + t – 2 = 0

⇔ (t – 1)(t2 + t + 2) = 0 ⇔ t = 1

Với t = 1 ⇒ (3/2)x = 1 ⇔ x = 0.

Bài 69 trang 124 SGK

Giải các phương trình sau:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-11

Lời giải:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-12

Phương trình trở thành:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-13

Vậy phương trình có hai nghiệm: x = 10; x = 9√10.

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-14

Phương trình tương dương với:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-15

Kết hợp với điều kiện, vậy phương trình đã cho có tập nghiệm là: S = {1; 1/16}.

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-16

Kết hợp với điều kiện, vậy phương trình có tập nghiệm là: S = {3-3; 3(-4/5)}.

Bài 70 trang 125 SGK

Giải các phương trình sau:

a) 34x = 43x;

b) 32  log3⁡x = 81x;

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-17

d) x6.5-logx5 = 5-5.

Lời giải:

a) 34x = 43x

Lấy logarit cơ số 3 hai vế, ta được:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-18

Vậy S = {log4/3(log34)}.

b) 32 – log3⁡x = 81x. Điều kiện x > 0.

Lấy logarit cơ số 3 hai vế, ta được:

2 – log3⁡x = 4 + log3⁡x

⇔ log3⁡x = -1

⇔ x = 3-1 = 1/3

Vậy S = {1/3}.

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-19

Vậy S = {2;  –1 – log32}.

d) x6.5-logx= 5-5. Điều kiện 0 < x ≠ 1.

Logarit hóa 2 vế theo cơ số x, ta được:

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-20

Vậy S = {5-1; 6√5}.

Bài 71 trang 125 SGK

Giải các phương trình sau:

a) 2x = 3 – x;                                                                                b) log2x = 3 – x.

Lời giải:

a) Ta thấy x = 1 là nghiệm. Ta chứng minh x = 1 là nghiệm duy nhất. Thật vậy:

+ Nếu x < 1: 2x < 21 < 2

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-21

Phương trình vô nghiệm với x < 1.

+ Nếu x > 1: 2x > 21 = 2

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-22

Phương trình vô nghiệm với x > 2. Vậy Phương trình có nghiệm x = 1.

b) log2⁡x = 3 – x. điều kiện: x > 0.

Dễ thấy x = 2 là nghiệm của Phương trình, ta chứng minh x = 2 là nghiệm duy nhất. thật vậy:

+ Nếu x > 2: log2⁡x > log2⁡2 = 1

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-23

Phương trình vô nghiệm x > 2.

+ Nếu 0 < x < 2: log2⁡x < log2⁡2 = 1

hinh-anh-bai-7-phuong-trinh-mu-va-logarit-3689-24

Phương trình vô nghiệm 0 < x < 2.

Vậy phương trình có nghiệm duy nhất x = 2.

Tin tức mới


Đánh giá

Bài 7. Phương trình mũ và lôgarit | Bài giải GIẢI TÍCH 12 (Nâng Cao) | CHƯƠNG II - HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT - Lớp 12 - Sách Bài Giải

Tổng số sao của bài viết là: 5 trong 1 đánh giá
Xếp hạng: 5 / 5 sao

Bình Luận

Để Lại Bình Luận Của Bạn

Bài giải GIẢI TÍCH 12 (Nâng Cao)

  1. CHƯƠNG I - ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
  2. CHƯƠNG II - HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
  3. CHƯƠNG III - NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
  4. CHƯƠNG IV - SỐ PHỨC

Tin tức mới

Bộ Sách Lớp 12

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

Sách Sách Bài Giải

Lớp 12

Sách giáo khoa dành cho lớp 12

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.